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Calculation of diffusion coefficients for two-electron metal (i.e., those with 
two valence electrons) vapors in helium, argon, and molecular hydrogen is con- 
sidered. 

Calculation of the diffusion coefficients of metal vapors* in gases (as well as that of 
other transport coefficients) can be carried out using Enskog-Chapman kinetic theory formulas 
[i]. However use of conventional empirical approaches for determining the parameters of the 
potential energy of molecular interaction (and use of arbitrary combination rules) can lead 
to unexpected errors. For example, for mixtures of alkali metal vapors with inert gases such 
calculations, as is shown by a number of verification attempts, as a rule lead to values 1.5-2 
times lower than experimentally determined diffusion coefficients. For inert gas mixtures of 
metals with two valence electrons both lowered and elevated (up to 1.5 times) values of the 
diffusion coefficient may be obtained. Meanwhile, the potential energy of molecular inter- 
action can be determined reliably by solving the Schrodinger equation in the Borne-Oppenheimer 
approximation of "halted" cores [2], after which the value of D12 can be found more accurately. 
Thus, calculation of the diffusion coefficients of alkali metal vapors in inert gases with the 
first approximation of Enskog--Chapman theory 

PDn 3k 3/2 (NA/n) 1,2 ] / T  3 (1%41 _~- ~I~)/(2~[1M2 ) ( 1 ) 

using the interaction potential energy determined from the quantum mechanical solution (esta- 
blished in both nonempirical [3-5] and semiempirical [6-10] calculations) leads to good agree- 
ment with experimental data [Ii]. Moreover, as was shown in [ii], agreement with experiment 
can also be achieved with use of a more approximate quantum mechanical theory [12, 13] involv- 
ing introduction of an empirical parameter for the inert gases. This method also proves con- 
venient for mixtures of bivalent metal vapors not only with inert gases, but also with mole- 
cular hydrogen, which will be considered in greater detail below. Initially we will compare 
with experiment the results of calculations based on the more precise quantum mechanical solu- 
tions. 

Calculation of the potential energy of interaction of a magnesium atom with helium atoms 
(with explicit consideration of all electrons of both the metal and the gas) was carried out 
in [14] by a nonempirical quantum mechanical method with consideration of configuration inter- 
action**. Another study [15] performed this calculation for a wider region of interatomic 
(internuclear) distances with consideration of configuration interaction as well. In this 
calculation only the two valence electrons of the magnesium were considered explicitly. To 
consider the effects of inner electrons non-empirical pseudopotentials dependent on the orbital 
quantum number Z (Z-dependent pseudopotentials) were used [16]. For identical nuclear states the 
results of [14, 15] practically coincide (Fig. i). The depth of the potential well defined approxi- 
mately in [15] (the major calculations were performed for smaller interatomic distances) com- 
prised 21K at R = 9.8 atomic units. Due to the relatively shallow depth of the well (e/k is 

*Metal vapors, especially superheated ones, are practically monatomic. 
**That is, with consideration of the series of excited electronic states of the Mg--He quasi- 
molecule, which permits refining the interaction in close-lying and neighboring states, in- 
cluding the ground state, and determination of the long-distance dispersion interaction. 
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Fig. i .  Potential energy of interaction 
between magnesium and helium atoms: solid 
line, ~(R) from calculations of [15]; points, 
calculation of [14]. #, R, atomic units. 

small in comparison to temperatures of the order of thousands of K), to approximate the poten- 
tial curve we will use a well-free Borne repulsive potential 

re(R) =B exp ( - -R/Ro) ,  (2 )  

where  B and R0 a r e  c o n s t a n t s .  T a b l e s  o f  c o l l i s i o n  i n t e g r a l s  f o r  t h i s  p o t e n t i a l  a r e  p r e s e n t e d  
in  [ i 7 ] .  R e s u l t s  o f  c a l c u l a t i n g  PD12 f o r  m i x t u r e s  o f  magnes ium v a p o r  w i t h  h e l i u m  w i t h  Eq. (1 )  
a r e  p r e s e n t e d  in  T a b l e  1. From t h i s  t a b l e  one can  s e e  t h e  good a g r e e m e n t  b e t w e e n  c a l c u l a t e d  
and experimental [18] PD12 values (see also Fig. 2). 

Semiempirical quantum mechanical calculations of the potential energy of interaction 
between bivalent metals and inert gases were presented in [19, 20]. In [19] the Baylis method 
[21], suitable for the case of heavy gases (Ar, Kr, Xe) considered therein, was used. This is 
a method which uses s Gombas pseudopotentials [22], based on a statistical model 
of the atom. We will use a similar method for calculating the interaction with heavy inert 
gases. Table 1 shows results of PD12 calculations with Eq. (i) for a mixture of cadmium vapor 
with argon using the interaction potential energy of [19], approximation formula (2) (although 
in the given case potential well depth is about 380 K for R = 6/6 atomic units). We again 
see satisfactory correspondence between calculation and experiment [18]. 

In [20] a calculation of the potential energy of interaction of bivalent metal atoms with 
atoms of light inert gases (He, Ne) was presented. Due to the small number of electrons in 
such atoms use of the statistical theory is limited. Therefore Z-dependent pseudopotentials 
are used, considering the actual features of electron shell construction. As in a number of 
other studies (for example, [23]) terms are included directly in the Hamiltonian to consider 
empirical data on electron interaction with inert gas atoms, as well as spectroscopic data 
for the metal ions. Table i shows results of PDI2 calculations with Eq. (i) using potential 
energy values calculated in [20] for interaction of magnesium, cadmium, and mercury atoms 
with helium atoms, approximated with Eq. (2) for interatomic distances. It is evident from 
the table that for Mg--He and Cd-He mixtures the calculated results agree very well with 
experiment. However for the mixture Hg-He the agreement is unsatisfactory. Table I gives 
PDI2 values found in this manner for Mg--Ne, Cd--Ne, and Hg--Ne mixtures. However for these 
mixtures the comparison was formed not with experimental values, but rather PD12 values esta- 
blished by generalization of experimental data on other mixtures [24]. It is evident that the 
agreement is good for Mg--Ne and Cd--Ne mixtures, but lacking for Hg--Ne. The marked divergence 
of the PD12 values from experimental values for this mixture as well as Hg--He can apparently 
be explained by elevation of the interaction potential values of [20] for mixtures of mercury 
vapor with neon and helium. This was noted by the authors of [20] themselves in regard to 
Hg--Ne. For the mixture Hg--He the elevation of the calculated potential is confirmed by com- 
parison with the potential reconstructed from data on atomic beam scattering. 

We will now turn to calculating diffusion coefficients of monatomic metal vapors in mole- 
cular hydrogen. Upon interaction of a metal atom with a biatomic molecule the potential energy 
depends not only on coordinate R (in the given case the distance from the metal atom core to 
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TABLE i. Calculated PDz2 Values Found Using 
Results of Semiempirical Calculations of Atom- 
ic Interaction Energy (d, ratio of calculated 
PDz2 values to experimental (or found by genera- 
lization)) 

Mixture 

Mg--He [15] 
Mg--He [20] 
Mg--Ne [20] 
Hg--He [20] 
Hg--Ne [20] 
Cd--He [20] 
Cd--Ne [20] 
Cd--Ar [19] 

T,K 

1030 
1030 
1030 
470 
470 
780 
780 
780 

PDa:, N/sec 

41,4 
40,3 
19,7 
10,9 
4,8 

25,0 
10,3 
7,8 

1,02 
1,00 
0,91 
0,74 
0,78 
1,04 
0,94 
1,15 

the center of the straight line joining the cores in the biatomic molecule (Fig. 3)) but also 
the angle e between that line and the vector R. Yet another parameter for the potential 
energy is the inter-core distance, which we will only consider in calculations of diffusion, 
the given distance comprising rH2 = 1.4 atomic units. The mean (over angle 8) potential 
~(R) can be defined by the following expression 

~(R)=~(R ,  0 = o ) + ~ . ~ [  0=- , (31 

where r O = 0) and r O = ~/2) are the potentials for the two closest types of system 
symmetry, corresponding to the indicated 8 values. 

Equation (3) follows from the fact that in three-dimensional space twice as many colli- 
sions occur on the frontal configuration (8 = ~/2) as on the side (8 = 0). The expression 
was tested by integration over the angle O of the potential function O(R, O), approximating 
the numerical results of the theoretical study for the system Li--H 2 [25]. In the present 
study nonempirical calculations were carried out using two sets of base wave functions 
(limited and more complete). Coulomb and exchange energy were calculated by the Hartree- 
Fock method and a more complete calculation considering multiconfiguration interaction. For 
the potential energy of interaction of alkali metal atoms (Li, Na, K, Rb, Cs) with a hydrogen 
molecule a semi-empirical calculation was also carried out [26] for 0 = 0 and 8 = ~/2 using 
g-dependent pseudopotentials by the method employed in [23]. However for the system Li--H 2 
the results of [26] diverge intensely from the more accurate data of [25]. Nonempirical 
calculations for potential energy for the system Na--H 2 were performed by the Hartree--Fock 
method in [27] for 0 = 0 and 8 = ~/2. In the latter case the calculations considered multi- 
configuration interaction. Resting upon the results of [25, 27], we may, as in [Ii], use 
asymptotic quantum mechanical theory [12, 13] to calculate the interaction of a metal atom 
with a hydrogen molecule. The electron scattering length of molecular hydrogen required in 
such calculations can be taken as L = 1.27 atomic units [28]. If we take the integration 
radius (problem parameter about the hydrogen molecule p = 0.2 atomic units in the asymptotic 
expression used in [ii]: 

~ex,c (R) = 2 ~ ( L + p )  (~'9+ 1)exp(~'P)~2(R)/(1--~ "L), (4 )  

then exchange energy as calculated by that expression corresponds to results of the calcula- 
tions of [25, 27] averaged over angle O with the aid of Eq. (3) (Fig. 4). We consider the 
results of these studies without consideration of the long-distance action of the lithium and 
sodium atoms on the hydrogen molecule. Such calculations basically define the exchange inter- 
action energy, as does Eq. (4). The agreement obtained permits using this expression with the 
indicated ~exc(R) value to determine the average exchange energy of atomic interaction of bi- 
valent metals with a hydrogen molecule. For two-electron metals (i.e., atoms with two equi- 
valent valence electrons) in Eq. (4) we must introduce a factor ~ = 2 [Ii], which develops 
when a Rak genealogical scheme is used [13]. To estimate the long-distance attractive energy 
(which transforms to dispersive at large distances) one can use the approximate recalculation 
formula 

--M--H~ --Na--H~ pM--H2 j pNa--H~ 
~at (R) = ~at (~)~6 lu6 , (5) 
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Fig. 2. Comparison of diffusion coefficient values for 
magnesium--helium mixture calculated with nonempirical 
interaction potential [15] (curve I) and experiment 
[18] (points); curve 2, averaged line. PDI=, N/sec, 
T, K. 
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Fig. 3. For calculation of the interaction potential 
of a metal atom (M) with a biatomic homomolecule (H--H). 
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Fig. 4. Potential interaction energy with hydrogen molecule: 
a) lithium atom (solid line, calculation of [25]; points, 
asymptotic calculation); b) sodium atom (solid line, calcula- 
tion of [27]; points, asymptotic calculation). 

=Na-H 2 where ~at (R) is the difference between the interaction energies of Na and H 2 averaged 
over angle calculated in [27] with and without consideration of configuration interaction. 
In the absence of values of the dispersion constant C 6 in the reference literature those may 
be calculated using the Slater--Kirkwood method [2]. The net (by Eq. (4) with introduction 
of the factor m = 2 and by Eq. (5)) potential interaction energies for the systems Mg--H=, 
Zn--H=, and Cd--H 2 were approximated by Eq. (2). Results of further PDI= calculations with 
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TABLE 2. Calculated (with use of asymp- 
totic potentials) Values of PDz2 for Mix- 
ture of Metal Vapor with Molecular Hydro- 
gen (d is ratio of calculated values of 
PD12 to experimental ones) 

Mixture I T.K pD,,,N/Secld 
Mg--H~ I 1030 56,9 [ 1,04 
Zn--H~ [ 880 46,0 [ I, 02 
Cd--H2 780 36,8 I, 15 

Eq. (1) a r e  p r e s e n t e d  in  Table 2. The comparison wi th  the  e x p e r i m e n t a l  da ta  of  [29] shown 
there shows satisfactory correspondence. 

NOTATION 

P, mixture pressure; D12, mutual diffusion coefficient in binary mixture; k, Boltzmann's 
constant; NA, Avagadro's number; M I and M2, molecular masses of components; T, absolute temper- 
ature; o, geometric parameter of molecular (atomic) interaction potential energy #; T* = kT/e, 
reduced temperature; E, potential well depth; ~i~, I)* (T*), reduced collision integral; R, dis- 

tance between centers of mass of interacting molecules (atoms); 8, angle between molecule axis 
and straight line joining its center of mass to the core of interacting metal atom; ~exc, ex- 
change molecular (atomic) interaction energy; ~' = J211--2/R, 11 is single ionization potential 
of the metal atom; ~(R), asymptotic wave function of metal atom valence electron. 
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HEAT AND MASS TRANSFER IN HYDROGEN SORPTION--DESORPTION 

IN METAL-HYDRIDE POWER-PLANT COMPONENTS 

V. M. Liventsov and A. V. Kuznetsov UDC 536.242 

A mathematical model which describes the dynamics of hydride-accumulator opera- 
tion, taking account of the laws of heat and mass transfer and the reaction ki- 
netics of hydrogen sorption--desorption, is developed. Estimates of the accu- 
racy of the approximate analytical solutions are given. A generalization of the 
quasi-steady method of solving the Stefan problem is obtained. 

The hydrides of intermetallide compounds (IMC) -- for example, LaNis, FeTi, etc. -- are 
capable of reversible sorption and desorption of a large quantity of hydrogen. To optimize 
the operating conditions and construction of hydride accumulators, it is expedient to use 
mathematical modeling. In [i], a mathematical model of heat transfer in the hydride layer 
was proposed, and an approximate analytical solution was obtained under the assumption that 
sorption--desorption occurs at constant temperature (frontal model). In [2], a model taking 
account of heat and mass transfer was proposed; in [3], a model also taking account of the 
kinetics of hydrogen sorption--desorption was considered. 

The mathematical model here outlined is obtained on the basis of the laws of mass and 
energy conservation in differential form [4] and the equations of reaction kinetics, and is 
more general than those considered previously. 

The following assumptions are made in its formulation: 

i) heat transfer occurs on account of heat conduction of the hydride and convection in 
the filtration of free hydrogen in the hydride pores; 

2) the filtration of hydrogen occurs in viscous conditions; 

3) the change in hydrogen content in the hydride is due to two factors: the sorption--de- 
sorption reaction and the diffusion of bound hydrogen in the hydride. 

The mathematical model includes the following equations: 

mass conservation of free hydrogen (continuity) taking account of the equation of state 
of an ideal gas for free hydrogen 

' ( ) MH, ~h (..~:. --  div (D~ grad • ; (1) MH, a t HpH~ ~ H3 PH, gradpH, 
Rgas 0x ~ ' - ~ )  = hd~ediv (1 --  n) z ~H,T 2 M h 

energy conservat ion (heat  t r a n s f e r )  

( ,ph._[_CH ' ) .OPh{d• (2) ~gas MH' H Tput OTo~ = div (~hgrad T) -]- 2Mh ~ dx 

--div(D. grad~)) q- ~hd~e MHo c~, H~ P~ (gradpH,, gradT); 
, Rgas (1 - -  H )  z ~H~I 

the k ine t i c  equation of hydrogen sorp t ion-desorp t ion  

(•176 ~). (3) 
, RgasT Pd(T, • 
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